Algebra 1 SOL Review Session - Day 7

Topics

1. Line and Curve of Best Fit
2. Writing the Equation of a Line
3. Radicals

1. Line and Curve of Best Fit

Collecting data, writing the equation of a line/curve that best fits the data, making predictions.

Step 1: Make a scatter plot of the data.

- Go to DESMOS, click "start graphing"
- Click the plus sign in the upper left corner to insert a table
- Type in the data
- Look at the graph to see the shape the points are making

Step 2: Calculate the equation of the line/curve of best fit.

- Line of Best Fit
o Type $y_{1} \sim m x_{1}+b$ (if the points are making the shape of a line)
o Find your " m " and " b " values and plug them into $y=m x+b$
- Curve of Best Fit
o Type $y_{1} \sim a x_{1}^{2}+b x_{1}+c$ (if the points are making the shape of a parabola)
o Find your "a", "b", and "c" values and plug them into $y_{1} \sim a x_{1}^{2}+b x_{1}+c$

Step 3: Check the r^{2} value

- The value is known as the coefficient of determination. It will determine how strong the correlation is between x and y .
- The closer the value is to 1 , the stronger the correlation.

Guided Practice

Using the quadratic curve of best fit, which equation most closely represents the set of data?

$$
\{(-8,80.4),(-7,57.8),(-6,38.6),(-5,22.8),(3,18.8),(5,51.8),(7,98.4)\}
$$

- A. $y=x^{2}+2 x-5$
- B. $y=x^{2}-3 x+5.2$
C. $y=1.7 x^{2}-3 x+5$
D. $y=1.7 x^{2}+2.9 x-5.2$

This table shows the number of months used and the approximate distances driven, in miles, for six buses in a school district.

Buses

Bus	Months Used	Distances Driven (miles)
Bus A	6	10,100
Bus B	10	17,000
Bus C	12	23,900
Bus D	15	31,500
Bus E	20	43,200
Bus F	27	59,900

Using the line of best fit for these data, which value is the best prediction of the distance driven, in miles, by a bus that has been used for 40 months?

- A. 68,000
- B. 79,100
- C. 86,400
- D. 91,400

2. Writing the Equation of a Line

- Given a graph: identify slope and y-intercept, plug into $y=m x+b$
- Given slope and y-intercept: plug given values into $y=m x+b$
- Given two points: use DESMOS and follow instructions for finding line of best fit
- Passes through a point and is parallel to given line: using $y=m x+b$, plug in " x " and " y " from given point, and use the same slope as the given line and plug in for " m "; solve for " b "; plug in " m " and " b " values into $y=m x+b$
- Passes through a point and is perpendicular to given line: using $y=m x+b$, plug in " x " and " y " from given point, and use the opposite reciprocal slope of the given line and plug in for " m "; solve for " b "; plug in " m " and " b " values into $y=m x+b$

Guided Practice

Which equation best represents the line	
graphed below?	What is the equation of a line with a slope of $\frac{-3}{5}$ and y-intercept of $-7 ?$
A) $y=x+6$ B) $y=4$ What is the equation of a line that passes through points $(-3,14)$ and $(5,6) ?$ C) $2 x+3 y=12$ D) $3 x+2 y=12$	What is the equation of a line that is parallel to $y=-3 x+1$ and passes through $(-1,-7) ?$
What is the equation of a line that is perpendicular to $y=4 x-11$ and passes through $(-8,7) ?$	

3. Radicals (how to check your answer in DESMOS)

- Enter the radical in DESMOS ($\mathrm{y}=$ radical). If the radical contains variables, use x for all variables.
- You will notice that DESMOS provides a decimal value for the radical and a graph of the radical.
- For multiple choice questions, enter each answer choice into DESMOS
- The decimal value and the graph of the original radical and its correct answer will match.
- There may be more than one multiple-choice option whose decimal/graph matches the decimal/graph for the original radical. Of the matching options, choose the one that has the SMALLEST number under the radical sign.

Guided Practice

Directions: Click on all the correct answers.

Identify each expression that is in simplest radical form.

